Advertisements

Rhyolite and Basalt Glazes

I was beyond excited to work with my newest found material, a rhyolite from Topaz Mountain, in Juab Country, Utah.  This time rather than choosing a handful of very large rock samples (to insure relative material consistency), I instead went to a wash and filled up a 5 gallon bucket with very fine material the size of course sand. My reasoning this time was that consistency is completely relative, and as long as I get materials from the same spots, it doesn’t matter – and I can grab material that has already been 99% processed for me. In the end I think this worked out, because I was able to run 5 gallons of sand through our ball mill with 2x 1 gal. ball mill jars in 10 batches. But I’m getting a bit ahead of myself, because I think it’s important to test fire a material before you go through the trouble of ball milling. So my new first step in dealing with materials (after identification of course) is to take a small chunk, put it in a small dish, and fire to cone 10 in reduction. Since this is my primary temperature range, that’s it, if there are chances I’ll also put similar samples into cone 6 oxidation as well as an oilspot firing schedule, which is about cone 12 oxidation. Here was the result at cone 10, in reduction:

wpid-2015-04-26-17.18.21.jpg.jpeg

A small rhyolite pebble after being fired to cone 10, in reduction.

 

Looks a lot like a fired chunk of granite or feldspar. Onwards with the milling!

Someone asked me about my process for ball milling, and here it is: Fill a 1 gal ball mill jar 1/3 with mixed sized media (approx 50% 1/4″ balls, 25% 1/2″ balls, 25% 1″ balls) then fill the jar with 1/2 gallon of water, then fill the the rest of the container up with material until it’s about 2/3 full.) If I had more containers I wouldn’t exceed filling the jar 1/2 way, but my circumstances are what they are, and I haven’t needed to change anything yet, such as it is.

In reduction, this rhyolite material was surprisingly similar to my ice crackle glaze. I think with very little modification (a small addition of clay, bone ash, and maybe a bit of frit) I’m nearly positive this will look and feel like a Kuan, ice crackle glaze.

Rhyolite Glaze on a high Iron clay body. Fired to cone 10 in Reduction.

Rhyolite Glaze on a high Iron clay body. Fired to cone 10 in Reduction.

Once I had all of my material milled, I let it sit overnight and then drained off the excess water, leaving me with a glaze slurry with an SPG of 1.58 (That’s 79g of material in a 50cc syringe). That’s only important if you want to know how much material you have per given volume. Since I was going to blend this with a basalt material that was also in solution, I needed this info. After taking the SPG of my basalt material, which happened to be 1.54, I did a simple line blend. On both sides are the materials by themselves, in the middle a 50/50, and on the left and right middle 25/75.

wpid-2015-04-26-17.29.08.jpg.jpeg

Rhyolite/Basalt line blend. Red stoneware (top row) and porcelaineous (bottom). Fired to cone 12, oxidation.

 

Pretty interesting results, I think. The big surprise was how sweet the 25% Basalt and 75% Rhyolite mix came out.

1 part Basalt, 3 parts Rhyolite. Fired to cone 12 oxidation.

1 part Basalt, 3 parts Rhyolite. Fired to cone 12 oxidation.

Finally, because I was looking for an oilspot/tenmoku type glaze with this research, I should also detail my firing schedule. Here’s my current Blaauw gas kiln firing schedule:

0 time_temp 00:00 5
1 time_temp 01:30 200
2 time_temp 07:00 1160
3 time_temp 01:30 1200
4 time_temp 01:00 1220
5 time_temp 02:00 1230
6 time_temp 01:15 1252
7 oxidation 80
8 time_temp 00:08 1252
9 oxidation 150
10 time_temp 00:30 1220
11 time_temp 01:30 1200
12 cooling
13 time_temp 02:00 1000
14 time_temp 02:00 800
15 time_temp 02:00 700
16 time_temp 02:00 500
17 time_temp 02:00 300
18 time_temp 02:00 50
19 time_temp 04:00 50

Blaauw kilns have the capability of firing in extremely oxidized conditions – blowing in somewhere to the tune of double the amount of air needed for complete combustion. The default, and maximum air value is 200. An neutral flame is around 100, and a smoky reduction is something like a 70.

Basically, this program fires up to cone 6 in about 9 hours, and then goes slowly up to 1252C, reduces for 8 minutes, and then goes back to oxidation, drops to 1220 over the course of 30 minutes, then drops to 1200 over the course of an hour and a half.  I’m still very much tweaking this schedule, which works very well for some glazes, and not so much for others.

Advertisements

One thought on “Rhyolite and Basalt Glazes

  1. Pingback: Clay Blog Review: April 2015 - Pottery Making Info

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: